

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 179 (2006) 2079-2085

JOURNAL OF SOLID STATE CHEMISTRY

www.elsevier.com/locate/jssc

Magnetic susceptibility and specific heat of uranium double perovskite oxides Ba_2MUO_6 (M = Co, Ni)

Yukio Hinatsu*, Yoshihiro Doi

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received 2 December 2005; received in revised form 22 March 2006; accepted 26 March 2006 Available online 4 April 2006

Abstract

Double perovskites Ba_2MUO_6 (M = Co, Ni) were prepared by the solid-state reaction. X-ray diffraction measurements show that both cobalt (nickel) and uranium ions are ordered in the NaCl type over the six-coordinate B sites of the perovskite ABO_3 . Detailed magnetic susceptibility and specific heat measurements show that Ba_2CoUO_6 and Ba_2NiUO_6 order ferromagnetically at 9.1 and 25 K, respectively. From the analysis of the magnetic specific heat, the ground states of the Co^{2+} and Ni^{2+} ions were determined. \bigcirc 2006 Elsevier Inc. All rights reserved.

Keywords: Magnetic properties; Uranium; Oxide; Cobalt; Nickel; Perovskite; Magnetic susceptibility; Specific heat

1. Introduction

The perovskite-type oxides have the general formula ABO_3 , in which A represents a large electropositive cation, and B represents a small electropositive cation. The perovskite structure can be described as a framework of corner-sharing BO_6 octahedra which contains A cations at 12-coordinate sites. This perovskite-type oxides ABO_3 incorporate various kinds of tetravalent ions at the B site of the crystal when A is Ba or Sr. In ABO₃ perovskites, the octahedrally coordinated B cation can be substituted partially by other suitable ions. One interesting feature is $A_2 M^{3+} M^{5+} O_6$ "double" perovskites that (or $A_2 M^{2+} M^{6+} O_6$) are formed by replacing the +4 cations in the $A^{2+}M^{4+}O_3$ perovskite compounds with +3 and +5 cations (or +2 and +6 cations). Since the *B* cations generally determine the physical properties of the perovskite ABO_3 [1], the elucidation of the arrangement and position of the B cations in the double perovskite are essential to know its properties. There are three B-cation sublattice types: random, rock salt, and layered [2]. The B cations in different oxidation states often regularly order, i.e., 1:1 arrangement of M^{3+} and M^{5+} (or M^{2+} and M^{6+}) ions has been observed over the six-coordinate B sites [2–17].

Some members of the double perovskites family have been proposed as half-metallic ferromagnets, with potential applications in the emerging field of spintronics [18,19]. The prototypical example is Sr₂FeMoO₆, which was shown to exhibit intrinsic tunneling-type magneto-resistance (TMR) at room temperature [18]. Further studies on the Ca, Ba analogs of the Sr₂FeMoO₆ showed that both the Ca₂FeMoO₆ and Ba₂FeMoO₆ also exhibited semi-metallic and ferromagnetic properties [19,20]. The Co analogs of Sr₂FeMO₆ (M = Mo, W) also indicate the occurrence of the magneto-resistance [21].

Pinacca et al. [22] reported the magnetic properties for the uranium analog of the double perovskite Sr_2CoMO_6 , i.e., Sr_2CoUO_6 . A canted antiferromagnetic structure was observed below $T_N = 10$ K, with an ordered magnetic moment of 2.44(7) μ_B for Co^{2+} ions. The effective magnetic moment calculated from the Curie–Weiss law at high temperatures indicates that the orbital contribution to the magnetic moment was unquenched at high temperatures. Magnetic and structural features were consistent with an electronic configuration Co^{2+} [3d⁷]–U⁶⁺ [Rn] ([Rn]: radon electronic core).

Previously, we prepared Ba_2MUO_6 with M = Co and Ni, and reported their magnetic properties through magnetic

^{*}Corresponding author. Fax: +81117062702.

E-mail address: hinatsu@sci.hokudai.ac.jp (Y. Hinatsu).

^{0022-4596/\$ -} see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2006.03.037

susceptibility measurements. Ba₂CoUO₆ and Ba₂NiUO₆ show a ferromagnetic behavior below 9 and 25 K, respectively [23]. This result is contrastive with the result for Ba₂CoWO₆ and Ba₂NiWO₆, i.e., these are antiferromagnetic with $T_{\rm N} = 17$ and 55 K, respectively [24].

In order to obtain further information about the crystal structure and magnetic properties for these Ba_2CoUO_6 and Ba_2NiUO_6 , we have performed X-ray diffraction, magnetic susceptibility, and specific heat measurements. Their results will be discussed here.

2. Experimental

Samples were prepared by solid-state reactions. As starting materials, BaCO₃, CoO (or NiO), and U₃O₈ were used. Before use, BaCO₃ was heated in atmosphere at 800 °C to remove any moisture and U₃O₈ was oxidized in air at 850 °C to form the stoichiometric compound. BaCO₃, CoO (or NiO) and U₃O₈ were weighed in the intended stoichiometric metal ratio Ba:Co(Ni):U = 2:1:1. After being finely ground in an agate mortar, the mixtures were pressed into pellets and then heated in air at 1000 °C for 120 h with several intermediate re-grindings.

Powder X-ray diffraction profiles were measured using a Rigaku Multi-Flex diffractometer with $CuK\alpha$ radiation equipped with a curved graphite monochromator. The data

were collected by step scanning in the angle range of $10^{\circ} \leq 2\theta \leq 120^{\circ}$ at a 2θ step size of 0.02° . The X-ray diffraction data were analyzed by the Rietveld technique, using the programs RIETAN2000 [25].

The temperature dependence of the magnetic susceptibility was measured with a SQUID magnetometer (Quantum Design, MPMS) under both zero-field-cooled (ZFC) conditions and field-cooled (FC) conditions. The former was measured on heating the sample up to 400 K under the applied magnetic field of 0.1 T after zero-field cooling to 1.8 K. The latter was measured upon cooling the sample from 400 to 1.8 K under 0.1 T. The field dependence of magnetization was measured at 5 K over the applied magnetic field range of $-5T \le H \le 5T$.

The specific heats were measured using a relaxation technique applied by a specific heat measuring system (Quantum Design, PPMS) in the temperature range of $1.8 \le T \le 300$ K. The sample in the form of a thin plate was mounted on a sample holder (thin alumina plate) with Apiezon for better thermal contact.

3. Results and discussion

3.1. Preparation and crystal structure

Figs. 1(a) and (b) show the X-ray diffraction profiles for Ba_2CoUO_6 and Ba_2NiUO_6 , respectively. The X-ray

2081

diffraction measurements showed that both compounds were crystallized in a cubic phase. We have performed the Rietveld analysis for the X-ray diffraction profiles. As another compound BaUO₄ was detected as a minor impurity in the diffraction profile for Ba₂CoUO₆, it was included as a second phase in the refinement. From the scale factors, the amount of BaUO₄ in the sample was 1.6%. In the diffraction profile for Ba₂NiUO₆, some very weak unidentified diffraction lines were detected. They were excluded from the Rietveld analysis. The structure was refined by applying the space group $Fm\bar{3}m$. This space group allows two crystallographically distinct octahedral sites in the perovskite structure, thus permitting 1:1 positional ordering between the *B*-site ions, U^{6+} and Co^{2^+} (or Ni²⁺) ions. Therefore, the deviation from the cubic symmetry of the BO₆ octahedral coordination is not observed. The refined structural parameters for Ba₂CoUO₆ and Ba₂NiUO₆ are listed in Table 1. Fig. 2 shows the crystal structure of Ba_2MUO_6 (M = Co, Ni). Table 2 lists some important bond lengths. The $U^{6+}-O^{2-}$ bond lengths (2.121(7) Å for Ba_2CoUO_6 , 2.089(5) Å for Ba₂NiUO₆) are almost equal to the value estimated from the Shannon's values (2.08 Å) [26]. Bond lengths for $Co^{2+}-O^{2-}$ (2.066(7) Å) and $Ni^{2+}-O^{2-}$ (2.076(5) Å) also support the cobalt (nickel) ions being in the +2 state. To obtain some insight into the oxidation states distributions, we have performed bond-valence analysis according to the Brown model [27], and the results are also listed in Table 2. The values of bond-valence sums show that the ionic species in these compounds should be $Ba_2^{2+}Co^{2+}U^{6+}O_6^{2-}$ and $Ba_2^{2+}Ni^{2+}U^{6+}O_6^{2-}.$ As will be described later, the results of the magnetic susceptibility measurements also show the validity for the oxidation states of Co (Ni) and U.

3.2. Magnetic properties

3.2.1. Ba_2CoUO_6

Fig. 3 shows the temperature dependence of the magnetic susceptibilities for Ba₂CoUO₆. A ferromagnetic transition is observed at 9.0 K, which corresponds to our previous results [23]. The present detailed measurements reveal the divergence between the ZFC and FC susceptibilities below this transition temperature. The solid line in the inset of Fig. 3 shows the Curie–Weiss fitting for the magnetic susceptibilities. The effective magnetic moment (μ_{eff}) and Weiss constant (θ) are calculated to be 4.98(2) μ_{B} and 14.7(6) K, respectively. Since the U⁶⁺ ion is diamagnetic, the magnetic properties of this compound

Fig. 2. The crystal structure of Ba_2MUO_6 (M = Co, Ni).

Table 1						
Structural	parameters	for	Ba_2MUO_6	(M =	Co,	Ni)

Ba ₂ CoUO ₆					
· · · ·					
Space group Fm3m					
Ba	8 <i>c</i>	1/4	1/4	1/4	0.1(1)
Co	4b	1/2	1/2	1/2	0.2
U	4a	0	0	0	0.2
0	24 <i>e</i>	0.2467(8)	0	0	1.1(1)
Ba_2NiUO_6					
Space group $Em\overline{3}m$					
Ba	8 <i>c</i>	1/4	1/4	1/4	0.43(6)
Ni	4b	1/2	1/7	1/7	0.49(0) 0.50(7)
I	$\frac{40}{4a}$	0	0	0	0.36(5)
0	-44 24e	0 2492(6)	0	0	0.30(3) 0.73(5)
	210	0.2152(0)	v	0	0.75(5)

Note: Definition of reliability factors wR_p , R_I and R_e are given as follows: $wR_p = \left[\sum w(|F_{(o)}| - |F_{(c)}|)^2 / \sum w|F_{(o)}|^2\right]^{1/2}$, $R_I = \sum |I_{k(o)} - I_{k(c)}| / \sum I_{k(o)}$, and $R_e = \left[(N - p) / \sum_i w_i y_i^2\right]^{1/2}$.

Table 2 Bond lengths and bond–valence sums for Ba_2CoUO_6 and Ba_2NiUO_6

	Bond lengths	Atoms	Bond–valence sums
Ba_2CoUO_6			
Ba–O	2.961(1)	Ва	1.96
Co–O	2.066(7)	Со	2.19
U–O	2.121(7)	U	5.30
Ba ₂ NiUO ₆			
Ba–O	2.946(1)	Ва	2.04
Ni-O	2.076(5)	Ni	1.92
U–O	2.089(5)	U	5.78

Fig. 3. Temperature dependence of the magnetic susceptibility for Ba_2CoUO_6 . The inset shows the reciprocal susceptibility vs. temperature curve. The solid line is the Curie–Weiss fitting.

are due to the Co²⁺ ions. This effective magnetic moment is hardly compatible with the electronic configuration of Co^{2+} ion ([Ar]3d⁷) and a spin-only contribution. Considering high-spin (H.S.) Co²⁺, the total paramagnetic moment would be as low as $3.87 \,\mu_{\rm B}$. High-spin octahedral Co^{2^+} ion has a ${}^4T_{1g}$ ground state and consequently exhibits unquenched spin-orbit coupling with an expected magnetic moment of 5.20 $\mu_{\rm B}$. Usually, the octahedral Co²⁺ compounds have a moment of $4.7-5.2 \mu_{\rm B}$ [28]. That is, the experimental magnetic moment indicates that the orbital contribution to the effective magnetic moment is unquenched. And this value is quite close to the moment for $\text{Co}^{2+}\text{U}^{6+}\text{O}_4$ (4.99 μ_{B}) [29], and comparable moments have been reported for other double perovskites containing Co^{2+} ions [21,22,30]. The positive Weiss constant indicates the ferromagnetic interactions between Co^{2+} ions.

Fig. 4. Magnetic hysteresis curve for Ba₂CoUO₆ measured at 5K.

Fig. 5. Temperature dependence of the specific heat C_p for Ba₂CoUO₆. The inset shows the detailed temperature dependence below 40 K. The dotted line is the calculation results for the lattice specific heat (see text).

Fig. 4 shows the magnetization curve for Ba₂CoUO₆ at 5 K, clearly indicating a large field dependence of the magnetization and the existence of the magnetic hysteresis loop. A complete saturation of the magnetization is found and its saturation moment is $2.3 \,\mu_{\rm B}$. This value is a little smaller than the moment calculated from the number of unpaired electrons, $3 \,\mu_{\rm B}$. Magnetic cooperative phenomena have been reported for the similar double perovskites Ba₂CoWO₆, Ba₂NiWO₆, and Sr₂CoUO₆. Cox et al. [24] said that Ba₂CoWO₆ and Ba₂NiWO₆ showed antiferromagnetic transitions at 17 and 20 K, respectively. Pinacca et al. [22] reported Sr₂CoUO₆ to be antiferromagnetic with $T_{\rm N} = 10$ K.

Fig. 5 shows the variation of the specific heat for Ba_2CoUO_6 as a function of temperature. The results of the

specific heat measurements are consistent with those of the magnetic susceptibility measurements (Fig. 3), i.e., a clear λ -type specific heat anomaly was observed at the ferromagnetic transition temperature, 9.0 K.

temperature C_{mag}/T (left ordinate) and the magnetic entropy change S_{mag} (right ordinate) for Ba₂CoUO₆ below 40 K. The dotted line is the

calculated specific heat below 1.8 K (see text).

To calculate the magnetic contribution to the specific heat, we subtracted the lattice specific heat from the total specific heat. They were estimated by using a polynomial function of the temperature $f(T) = aT^3 + bT^5 + cT^7$ [31], in which the constants were determined by fitting this function to the observed specific heat data between 15 and 40 K. The calculated lattice specific heat is shown as a dotted curve in the inset of Fig. 5. The specific heat data below 1.8 K were extrapolated by $C_p \propto T^3$ curve [32]. The magnetic specific heat (C_{mag}) for Ba₂CoUO₆ is obtained by $C_{\text{mag}}(T) = C_{p}(T) - f(T)$ and its temperature dependence is shown in Fig. 6. The temperature dependence of the magnetic entropy calculated by $S_{\text{mag}}(T) = \int (C_{\text{mag}}/T) dT$ is also shown in the same figure. The magnetic entropy change due to the ferromagnetic ordering of Co^{2+} ions in the Ba_2CoUO_6 is obtained to be about 4.1 J/mol K. In general, the magnetic entropy change is expressed by the $S_{\text{mag}} = R \ln W$ (R is the molar gas constant and W the number of states for the Ln ion). The experimental value corresponds to the case for W = 2. The result of the magnetic entropy change indicates that the degeneracy of the ground state for the Co^{2+} ion in Ba_2CoUO_6 should be twofold.

3.2.2. Ba₂NiUO₆

Fig. 7 shows the temperature dependence of the magnetic susceptibilities for Ba_2NiUO_6 . This compound also shows a ferromagnetic behavior at low temperatures

Fig. 7. Temperature dependence of the magnetic susceptibility for Ba_2NiUO_6 . The inset shows the reciprocal susceptibility vs. temperature curve. The solid line is the Curie–Weiss fitting.

T/K

and the transition temperature is about 25 K. The small divergence between the ZFC and FC susceptibilities is found below this transition temperature. The solid line in the inset of Fig. 7 shows the Curie-Weiss fitting for the magnetic susceptibility vs. temperature curve. The effective magnetic moment (μ_{eff}) and Weiss constant (θ) are calculated to be 3.07(1) $\mu_{\rm B}$ and 29.7(3) K, respectively. The large positive Weiss constant shows the strong ferromagnetic interactions between Ni²⁺ ions. The magnetic properties of this compound are ascribed to the Ni²⁺ ions because the U^{6+} ion is diamagnetic. It is known that for the Ni²⁺ ion in an octahedral crystal field, the crystal field is operative and the effective magnetic moment is larger than the spin-only value calculated from the equation $\mu_{\text{eff}} = 2[S(S+1)]^{1/2}$ and is usually in the range from 2.9 to $3.5 \mu_{\rm B}$ [33,34]. The value observed experimentally $(3.07(1) \mu_{\rm B})$ is in this range, which means that the crystal field effect is operative to some extent.

A complete saturation of the magnetization for Ba_2 NiUO₆ is easily observed. Fig. 8 shows the magnetization curve as a function of applied magnetic field. The saturation moment for Ba_2NiUO_6 is $2.1 \mu_B$. This value is reasonable, because the moment calculated from the number of unpaired electrons is $2 \mu_B$.

Fig. 9 shows the variation of the specific heat for Ba_2NiUO_6 as a function of temperature. A clear λ -type specific heat anomaly was observed at the ferromagnetic transition temperature, 25 K.

The magnetic specific heat (C_{mag}) for Ba₂NiUO₆ is obtained in the same way as the case for Ba₂CoUO₆, i.e., by subtracting the calculated lattice specific heat from the

0.8

0.6

6

5

Ba,CoUO,

Fig. 8. Magnetic hysteresis curve for Ba₂NiUO₆ measured at 5K.

Fig. 9. Temperature dependence of the specific heat C_p for Ba₂NiUO₆. The inset shows the detailed temperature dependence below 40 K. The dotted line is the calculation results for the lattice specific heat (see text).

experimental specific heat. The variation of the magnetic specific heat divided by temperature (C_{mag}/T) against temperature is shown in Fig. 10. The temperature dependence of the magnetic entropy (S_{mag}) calculated by $S_{mag}(T) = \int (C_{mag}/T) dT$ is also shown in the same figure. The magnetic entropy change due to this ferromagnetic ordering of Ni²⁺ ions in the Ba₂NiUO₆ is obtained to be about 8.1 J/mol K. The comparable magnetic entropy change has been reported for NiU₂O₆ in which the Ni²⁺ ion is also in an octahedral crystal field environment and shows an antiferromagnetic transition at 35.6 K [35]. The result of the magnetic entropy change indicates that the degeneracy of the ground state for the Ni²⁺ ion in Ba₂NiUO₆ should be quadruple.

Fig. 10. Temperature dependences of the magnetic specific heat divided by temperature C_{mag}/T (left ordinate) and the magnetic entropy change S_{mag} (right ordinate) for Ba₂NiUO₆ below 50 K.

4. Summary

Uranium oxides Ba_2MUO_6 (M = Co, Ni) with the double perovskite structure were prepared. The Rietveld analysis shows that the structure was refined by applying the space group $Fm\bar{3}m$. This space group allows two crystallographically distinct octahedral sites in the ABO_3 perovskite structure, thus permitting 1:1 positional ordering between the *B*-site ions, U⁶⁺ and Co²⁺ (or Ni²⁺) ions. Detailed magnetic susceptibility and specific heat measurements show that Ba_2CoUO_6 and Ba_2NiUO_6 are ordered ferromagnetically at 9.1 and 25 K, respectively.

Acknowledgments

This work was supported by Grant-in-aid for Scientific Research of Priority Areas "Panoscopic Assembling and High Ordered Functions for Rare Earth Materials" No. 17042003 from the Ministry of Education, Science, Sports, and Culture of Japan.

References

- [1] K. Ito, K. Tezuka, Y. Hinatsu, J. Solid State Chem. 157 (2001) 173.
- [2] M.T. Anderson, K.B. Greenwood, G.A. Taylor, K.R. Poeppelmeier, Prog. Solid State Chem. 22 (1993) 197.
- [3] P.D. Battle, W.J. Macklin, J. Solid State Chem. 52 (1984) 138.
- [4] P.D. Battle, C.W. Jones, J. Solid State Chem. 78 (1989) 108.
- [5] P.D. Battle, C.W. Jones, R. Studer, J. Solid State Chem. 90 (1991) 302.
- [6] E.M. Ramos, I. Alvarez, R. Saez-Puche, M.L. Veiga, C. Pico, J. Alloy Compd. 225 (1995) 212.
- [7] Y. Doi, Y. Hinatsu, J. Phys.: Condens. Matter 11 (1999) 4813.
- [8] M. Wakeshima, D. Harada, Y. Hinatsu, N. Masaki, J. Solid State Chem. 147 (1999) 618.
- [9] K. Henmi, Y. Hinatsu, N. Masaki, J. Solid State Chem. 148 (1999) 353.

- [10] M. Wakeshima, D. Harada, Y. Hinatsu, J. Mater. Chem. 10 (2000) 419.
- [11] K. Tezuka, K. Henmi, Y. Hinatsu, N. Masaki, J. Solid State Chem. 154 (2000) 591.
- [12] H.A. Blackstead, J.D. Dow, D.R. Harshman, W.B. Yelon, M.X. Chen, M.K. Wu, D.Y. Chen, F.Z. Chien, D.B. Pulling, Phys. Rev. B 63 (2001) 214412.
- [13] Y. Doi, Y. Hinatsu, J. Phys.: Condens. Matter 13 (2001) 4191.
- [14] R.H. Mitchell, Perovskites: Modern and Ancient, Almaz Press, Ont., Canada, 2002.
- [15] Y. Sasaki, Y. Doi, Y. Hinatsu, J. Mater. Chem. 12 (2002) 2361.
- [16] L. Li, B.J. Kennedy, J. Solid State Chem. 177 (2004) 3290.
- [17] W.T. Fu, D.J.W. IJdo, J. Solid State Chem. 178 (2005) 1312.
- [18] K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395 (1998) 677.
- [19] A. Maignan, B. Raveau, C. Martin, M. Hervieu, J. Solid State Chem. 144 (1999) 224.
- [20] J.A. Alonso, M.T. Casais, M.J. Martinez-Lope, J.L. Martinez, P. Velasco, A. Munoz, M.T. Fernandez-Diaz, Chem. Mater. 12 (2000) 161.
- [21] M.C. Viola, M.J. Martinez-Lope, J.A. Alonso, J.L. Martinez, J.M. De Paoli, S. Pagola, J.C. Pedregosa, M.T. Fernandez-Diaz, R.E. Carbonio, Chem. Mater. 15 (2003) 1655.

- [22] R. Pinacca, M.C. Viola, J.C. Pedregosa, A. Munoz, J.A. Alonso, J.L. Martinez, R.E. Carbonio, Dalton Trans. 447 (2005).
- [23] Y. Hinatsu, J. Alloy Compd. 215 (1994) 161.
- [24] D.E. Cox, G. Shirane, B.C. Frazer, J. Appl. Phys. 38 (1967) 1459.
- [25] F. Izumi, T. Ikeda, Mater. Sci. Forum 321-324 (2000) 198.
- [26] R.D. Shannon, Acta Crystallogr. A 32 (1976) 751.
- [27] I.D. Brown, in: M. O'Keeffe, A. Navrotsky (Eds.), Structure and Bonding in Crystals, vol. 1, Academic Press, New York, 1981.
- [28] R.L. Carlin, Magnetochemistry, Springer, Berlin, 1986 (Chapter 4).
- [29] E.F. Bertaut, A. Delapalme, F. Forrat, R. Pauthenet, J. Phys. Radium 23 (1962) 477.
- [30] V.A. Bokov, S.A. Kizhaev, I.E. Myl'nikova, A.G. Tutov, Soviet Phys.—Solid State 6 (1965) 2419.
- [31] J.E. Gordon, R.A. Fisher, Y.X. Jia, N.E. Phillips, S.F. Reklis, D.A. Wright, A. Zettle, Phys. Rev. B 59 (1999) 127.
- [32] S.J. Joshua, A.P. Crackell, Phys. Lett. A 28 (1969) 562.
- [33] A. Earnshaw, Introduction to Magnetochemistry, Academic Press, London, 1968.
- [34] E. König, G. König, in: K.-H. Hellwege, A.M. Hellwege (Eds.), Landolt-Börnstein Tabellen, New Series, Group II, vols. 2, 8, 10–12, Magnetic Properties of Coordinated and Organometallic Transition Metal Compounds, Springer, Berlin, 1966, 1976, 1979, 1981, 1984.
- [35] Y. Hinatsu, J. Solid State Chem. 114 (1995) 595.